目的: 制备辅酶Q10过饱和自微乳化释药系统(S-SMEDDS),并对其体外特性进行研究。 方法:以粒径和自乳化时间为指标,通过Box-Behnken响应面法优化得出最佳SMEDDS处方比例; 再通过考察混合油相中辅酶Q10的饱和溶解度来确定辅酶Q10 SMEDDS处方载药量;最后考察促饱和物质与辅酶Q10 SMEDDS的相容性及乳化后的稳定性,得出加入促饱和物质的种类和用量;并对辅酶Q10 S-SMEDDS的理化特性进行测定。结果:辅酶Q10 S-SMEDDS的最优处方为中链甘油三酯(MCT)-聚氧乙烯醚氢化蓖麻油(Cremophor EL)-辛酸癸酸聚乙二醇甘油酯(Labrasol)配比为30.92∶58.94∶40,辅酶Q10的载药量为8.3%,羟丙甲基纤维素K100(HPMC K100)的加入量为 2%,形成的微乳粒径平均值为28.90 nm,乳化时间平均值为29.49 s,电位平均值为-31.15 mV,溶出度在20 min时达到90.11%。结论:所制备的辅酶Q10 S-SMEDDS可明显提高其溶解度,且乳化后稳定性更好,比普通SMEDDS更具有优势。
Objective: To prepare Coenzyme Q10 supersaturated self-microemulsion drug delivery system (Coenzyme Q10 S-SMEDDS) and study its in vitro properties. Methods: Taking particle size and selfemulsification time as indicators, the optimal proportion of SMEDDS prescription was obtained through optimizing Box-Behnken response surface methodology; the drug loading of Coenzyme Q10 SMEDDS was determined by investigating the saturated solubility of Coenzyme Q10 in mixed oil phase; Finally, the type and dosage of saturation promoting substances were gotten by investigating the compatibility of saturation promoting substances with Coenzyme Q10 SMEDDS and the stability after emulsification; the physical and chemical properties of Coenzyme Q10 S-SMEDDS were determined. Results: The optimal prescription of Coenzyme Q10 S-SMEDDS is MCT-Cremophor EL-Labrasol (30.92∶58.94∶40). The drug loading of Coenzyme Q10 in SMEDDS is 8.3%, the addition amount of Hydroxypropyl methyl cellulose K100 (HPMC K100) is 2%, the formed microemulsion has an average particle size of 28.90 nm, an average emulsification time of 29.49 s and an average potential of -31.15 mV, and the dissolution rate reaches 90.11% at 20 min. Conclusion: The prepared Coenzyme Q10 S-SMEDDS could significantly improve its solubility, and the stability is better after emulsification. S-SMEDDS has more advantages than ordinary SMEDDS.
[1] 董英杰,艾莉,李晓怡,等.辅酶Q10普利醇环糊精磷脂分散体系的制备与评价[J].中南药学,2020,18(10):1621-1627.
[2] 李辉,张一娇,刘津军,等.辅酶Q10对大鼠心肌缺血再灌注损伤的保护作用及机制[J].贵州医科大学学报,2020,45(7):805-810.
[3] Michaelsen MH,SiqueiraJ?rgensen SD,Abdi IM,et al.FenofibrateOral Absorption from SNEDDS and SuperSNEDDS Is Not Significantly Affected by Lipase Inhibition in Rats [J].Eur JPharm Biopharm,2019,142:258-264.
[4] 郭雨凡,任淑珍,李敏,等.含功能性油的水飞蓟宾超饱和自纳米乳的制备与体外评价[J].中草药,2020,50(20):5137-5147.
[5] 马巧芳,曾佳,沙康,等.口服自微乳给药系统的研究进展[J].药学进展,2020,44(6):466-474.
[6] 苏卫,陈鹰,董少华,等.尼莫地平自微乳化释药系统的研制[J].中国药师,2013,16(4):516-520.
[7] 董少华,陈鹰,苏卫,等.辅酶Q10眼用微乳的研制[J].中国现代应用药学,2013,30(8):866-872.
[8] Khoo SM,Humberstone AJ,Porter CJH,et al. Formulation Design and Bioavailability Assessment of Lipidic Self-emulsifying Formulation of Halofantrine[J].Int J Pharm,1998,167(1-2):155-164.
[9] 郝翠,翟立海,董红敬,等.Box-Behnken 响应面法优化超声波辅助离子液体提取黄芩化学成分方法及抗炎活性评价[J].中国新药杂志,2021,30(11):1031-1037.
[10] 韩德恩,申延利,田萍,等.Box-Behnken 响应面法优化白藜芦醇 Labrasol/P407 混合胶束处方工艺及体外评价[J].中草药,2021,52(11):3209-3215.
[11] 董少华,陈鹰,苏卫,等.Plackett-burman联用BoxBehnken响应面法优化5-氨基水杨酸固体脂质纳米粒的制备及表征[J].中国医院药学杂志,2021,41(11):2292-2299.
[13] 赵丹丹,黄挺,黄绳武.依托泊苷过饱和自微乳化释药系统的制备工艺及质量评价研究[J].中草药,2015,46(6):822-831.
[12] 赖章婷,丁海波,蒋且英,等.水飞蓟宾过饱和自微乳给药系统的制备及体外质量评价[J].中草药,2019,50(17):4091-4099.
[14] 陈鹰,杜蓉,刘平,等.灯盏花素自微乳化释药系统的制备及特性研究[J].中草药,2009,40(3):374-378.
[15] 陈鹰,杜蓉,曾晓枫,等.促过饱和物质对多西他赛自乳化系统体外释药特性的影响[J].中国药学杂志,2010,45(6):444-449.
[16] 王姿媛,唐洪梅,薛秀清,等.尼莫地平过饱和自微乳的研制[J].广东药学院学报,2014,30(2):127-131.
[17] Bannow J,Yorulmaz Y,L?bmann K,et al.Improving the Drug Load and in Vitro Performance of Supersaturated Self-nanoemulsifyingDrug Delivery Systems(SuperSNEDDS)Using Polymeric Precipitation Inhibitors [J].IntJ Pharm,2020,575:118960.
[18] 张婷,王镜,申宝德,等.共载细叶远志皂苷和β细辛醚自微乳的制备及体外质量评价[J].中国中药杂志,2020,45(24):5988-5995.
[19] 李桂华,赵子晨,蒋满意,等.和厚朴酚自微乳给药系统制备工艺响应面法优化及质量评价研究[J].中草药,2022,53(2):362-371.
[20] 张然,杨冰,廖茂梁,等.双氢青蒿素自微乳给药系统的制备及其评价[J].中草药,2021,52(5):1291-1302.