目的:探讨三七治疗视网膜静脉阻塞(RVO)的分子作用机制。方法:采用TCMSP数据库及文献补充获得三七的有效成分,并在Swiss Target Prediction收集其作用靶点;使用GeneCards等5个数据库检索RVO疾病靶点,并将三七成分靶点与RVO疾病靶点进行映射;利用STRING、Cytoscape 3.8.2 软件构建蛋白-蛋白相互作用网络图,筛选出核心靶基因,对其进行GO和 KEGG富集分析。最后,利用Sybyl-x 2.0 软件进行分子对接验证。结果:筛选出三七有效成分10种,涉及354种蛋白。RVO的疾病靶点有181个, 其中9个是三七治疗RVO的潜在靶点。“药物-活性成分-疾病-靶蛋白”相互作用网络中,核心作用靶点包括VEGFA、EGFR等;通过GO及KEGG富集分析,筛选出参与RVO主要生物学过程28种,相关信号通路18条。三七治疗RVO潜在的分子机制与纤溶等生物学过程密切相关。关键信号通路包括HIF-1信号通路、PI3K-Akt信号通路等。分子对接结果提示,三七主要活性成分DFV、Panaxydol等与VEGFA、EGFR 等关键靶点有着较好的结合活性。结论:三七的多成分通过纤溶等多种生物学过程及HIF-1等多条生物学信号通路,多靶点、多通路、多效应作用于视网膜,进一步发挥治疗作用,而VEGFA、EGFR等可能是潜在作用靶点。
Objective: To explore the molecular mechanism of Panax notoginseng in the treatment of retinal vein occlusion (RVO). Methods: The active components of Panax notoginseng were screened by using TCMSP database and relative articles, and the corresponding active targets were collected by Swiss Target Prediction database. Then,GeneCards and other five databases were used to search RVO disease targets, and Panax notoginseng active targets were mapped to RVO genes. In addition, the network diagram of protein-proteininteraction was constructed by Cytoscape 3.8.2 and STRING software,andthese core genes were selected for GO and KEGG enrichment analysis. Finally, molecular docking verifi cation was performed by software Sybyl-x 2.0. Results: Ten active components of Panax notoginseng were screened, involving 354 proteins. There were 181 disease targets of RVO, among which 9 were potential targets of Panax notoginseng for the treatment of RVO. Furthermore, in the drug‐active‐component‐disease‐target protein interaction network, the core target genes included VEGFA, EGFR, etc. According to GO and KEGG enrichment analysis, 28 biological processes and 18 signaling pathways related to RVO were screened out. The potential molecular mechanism of Panax notoginseng treatment of RVO was closely related to fi brinolysisand other biological processes. The key signaling pathways included HIF-1 signaling pathway, PI3K-Akt signaling pathway, etc. Molecular docking results also suggested that the main active compoents of DFVand panaxydol had good binding activity to key targets such as VEGFA, EGFR and other key targets. Conclusion: The several components of Panax notoginseng act on the retina through diff erent biological processes such as fi brinolysisand diff erent signaling pathways such as HIF-1, with multiple targets, multiple pathways and multiple eff ects, and further play a treatment role. So the VEGFA, EGFR, etc., may be the potential therapeutic targets.
[1] Song P,Xu Y,Zha M,et al.Global Epidemiology of Retinal Vein Occlusion:a Systematic Review and Metaanalysis of Prevalence,Incidence,and Risk Factors[J].J Glob Health,2019,9(1):10427.
[2] Daruich A,Matet A,Moulin A,et al.Mechanisms of Macular Edema:Beyond the Surface[J].ProgRetin Eye Res,2018,63:20-68.
[3] 邵霖霖,冯俊.中医药治疗视网膜静脉阻塞研究进展 [J].中国中医基础医学杂志,2020,26(12):1909-1911.
[4] 黎琳娟.活血化瘀类中药干预视网膜静脉阻塞有效性和安全性的系统评价与荟萃分析[D].成都:成都中医药大学,2020.
[5] 解静,高杉,李琳,等.网络药理学在中药领域中的研究进展与应用策略[J].中草药,2019,50(10):2257-2265.
[6] 李玮婕,毛霞,郭秋岩,等.网络药理学研究策略在组合药物研究中的应用[J].转化医学电子杂志,2018,5(3):3-16.
[7] 庞会婷,罗朵生,郭姣.三七化学成分分析及其抗炎机制的网络药理学探讨[J].中草药,2020,51(21):5538-5547.
[8] 卢汝梅,黄志其,李兵,等.三七化学成分[J].中国实验方剂学杂志,2016,22(7):62-64.
[9] Hirabayashi K,Tanaka M,Imai A,et al.Development of a Novel Model of Central Retinal Vascular Occlusion and the Therapeutic Potential of the Adrenomedullin Receptor Activity Modifying Protein 2 System[J].The American Journal of Pathology,2019,189(2):449-466.
[10] Victor K,Carol YC,Xiang L,et al.Retinal Vein Occlusion in a Multi-Ethnic Asian Population:The Singapore Epidemiologyof Eye Disease Study[J].Ophthalmic Epidemiology,2016,23(1):6-13.
[11] Wang T,Guo R,Zhou G,et al.Traditional Uses,Botany,Phytochemistry,Pharmacology and Toxicology of Panax notoginseng(Burk.)F.H.Chen:Areview [J].J Ethnopharmacol,2016,188:234-25.
[12] 陈奕玮,王君,赵坤,等.基于网络药理学探讨三七治疗动脉粥样硬化的作用机制[J].中医杂志,2019,19(60):1684-1691.
[13] 丁文龙,王月明,王文进.人参环氧炔醇(PND)单体促进周围神经再生的研究[C].中国解剖学会2015年年会论文文摘汇编.西宁:中国解剖学会,2015:2.
[14] 刘国栋,辛兵,黄栋,等.亚油酸乙酯抑制钛颗粒诱导的炎症反应及其作用机制[J].中国组织工程研究,2016,20(52):7836-7843.
[15] 赵敏洁.基于多组学策略研究月桂酸单甘油酯对高脂膳食饲喂小鼠脂代谢的调节作用及机制[D].杭州:浙江大学,2019.
[16] Li Y,Yao J,Han C,et al.Quercetin,Inflammation and Immunity[J].Nutrients,2016,8(3):167.
[17] Miller JW,LeCouter J,Strauss EC,et al.Vascular Endothelial Growth Factor in a Intraocular Vascular Disease[J].Ophthalmology,2013,120(1):106-114.
[18] Liu Y,Shen J,Fortmann SD,et al.Reversible Retinal Vessel Closure from VEGF-induced Leukocyte Plugging[J].JCI Insight,2017,2(18):e95530.
[19] Lupo G,Cambria MT,Olivieri M,et al.AntiangiogenicEffect of Quercetin and Its 8-Methylpent Amethylether Derivative in Human Microvascular Endothelial Cells[J].J Cell Mol Med,2019,23(10):6565-6577.
[20] 韩艳珍,单铁英,李伟,等.口服枸杞多糖对小鼠肝纤维化组织基质金属蛋白酶-2及基质金属蛋白酶-2抑制剂水平影响的实验研究[J].陕西医学杂志,2021,50(3):276-279.
[21] Gori AM,Marcucci R,Fatini C,et al.Impaired Fibrinolysis in Retinal Vein Occlusion:a Role for Genetic Determinants of PAI-1 Levels[J].Thromb Haemost,2004,92(1):54-60.
[22] Glueck CJ,Wang P,Bell H,et al.Associations of Thrombophilia,Hypofib-rinolysis,and Retinal Vein Occlusion[J].Clin Appl Thromb Hemost,2005,11(4):375-389.
[23] Produit-Zengaffinen N,Favez T,Pournaras CJ,et al.JNK Inhibition Reduced Retinal Ganglion Cell Death after Ischemia/Reperfusionin Vivo and after Hypoxia in Vitro[J].AdvExp Med Biol,2016,854:677-683.
[24] 胡凡磊,朱佳鑫,穆荣,等.缺氧及缺氧诱导因子 HIF-1α促进类风湿关节炎中TLR信号通路介导的炎症反应[C].第八届全国免疫学学术大会论文集.重庆:中国免疫学会,2012:1.
[25] Lee M,Yun S,Lee H,et al.Quercetin Mitigates Inflammatory Responses Induced by Vascular Endothelial Growth Factor in Mouse Retinal Photo Receptor Cells through Suppression of Nuclear Factor KappaB[J].Int J Mol Sci,2017,18(11):2497.
[26] 雍红芳,戚卉,吴瑛洁,等.视网膜静脉阻塞继发黄斑水肿发病机制及黄斑水肿影响视功能的研究进展[J].国际眼科杂志,2019,11(19):1888-1891.
[27] Schmidt-Erfurth UM,Garcia-Arumi J,Gerendas B,et al.Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists(EURETINA)[J].Ophthalmologica,2019,242(3):123-162.
[28] 韩梦雨,王志军,金明.新生血管性眼病发病相关细胞因子研究进展[J].中华实验眼科杂志,2018,36(8):636-642.