研究进展

羟基磷灰石基复合骨修复材料研究进展

展开
  • (1)中国食品药品检定研究院, 北京 100050;北京航空航天大学材料科学与工程学院, 北京 100191; (2)中国食品药品检定研究院, 北京 100050; (3)北京航空航天大学材料科学与工程学院, 北京 100191

网络出版日期: 2019-03-22

基金资助

国家重点研发项目(编号2017YFC1105000)

Research Progress of Hydroxyapatite-based Composite Bone Repair Materials

Expand
  • (1)National Institutes for Food and Drug Control, Beijing 100050, China;School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (2)National Institutes for Food and Drug Control, Beijing 100050, China; (3)School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Online published: 2019-03-22

摘要

羟基磷灰石因为接近骨组织成分,具有优良的生物相容性,而被广泛应用于骨修复领域。由于单一材料不具有多种优异的生物学性能,因此,制备性能优越的羟基磷灰石/聚合物复合骨修复材料成为骨修复材料领域的热点之一。本文综述了设计羟基磷灰石基复合骨修复材料的一些要点,总结了近几年国内外羟基磷灰石/聚合物复合材料的研究状况,并介绍了载药羟基磷灰石骨修复材料的研究情况,最后对羟基磷灰石基复合骨修复材料的发展提出展望。

本文引用格式

陈涛, 付海洋, 李岩, 付步芳 . 羟基磷灰石基复合骨修复材料研究进展[J]. 中国药事, 2019 , 33(3) : 302 -309 . DOI: 10.16153/j.1002-7777.2019.03.011

Abstract

Hydroxyapatite is widely used in the field of bone repair because it is similar to bone tissue components and has excellent biocompatibility. Because single material does not have a variety of excellent biological properties, the preparation of hydroxyapatite/polymer-based composite bone repair materials with superior performance has become one of the hotspots in the field of bone repair materials. This paper reviews some key points of designing hydroxyapatite-based composite bone repair materials and summarizes the research status of hydroxyapatite/polymer-based composites at home and abroad in recent years. In addition, this paper introduces the research situation of hydroxyapatite bone repair materials for drug-loading and puts forward some prospects for the future development of hydroxyapatite-based composite bone repair materials.

参考文献

[1] 邓廉夫,燕宇飞. 骨修复材料的研究现状与进展[J]. 中国修复重建外科杂志,2018,32(7):815-820.
[2] Habraken W,Habibovic P,Epple M,et al. Calcium Phosphates in Biomedical Applications:Materials for the Future[J]. Materials Today,2016,19(2):69-87.
[3] Šupová M. Substituted Hydroxyapatites for Biomedical Applications:A Review[J]. Ceramics International, 2015, 41(8):9203-9231.
[4] Zhou H,Lee J. Nanoscale Hydroxyapatite Particles for Bone Tissue Engineering[J]. Acta Biomaterialia,2011,7(7):2769-2781.
[5] Liao S S,Cui F Z,Zhu Y. Osteoblasts Adherence and Migration through Three-Dimensional Porous Mineralized Collagen Based Composite:nHAC/PLA[J]. Journal of Bioactive & Compatible Polymers,2004,19(9):117-130.
[6] 王新. 纳米羟基磷灰石-壳聚糖骨组织工程支架的研究[D]. 北京:中国协和医科大学,2007:5-16.
[7] Stevens M M. Biomaterials for Bone Tissue Engineering[J]. Materials Today,2008,11(5):18-25.
[8] Gong T,Xie J,Liao J,et al. Nanomaterials and Bone Regeneration[J]. Bone Research,2015,3(3):15029.
[9] Olszta M J,Cheng X,Sang S J,et al. Bone Structure and Formation:A New Perspective[J]. Materials Science & Engineering R,2007,58(3):77-116.
[10] 向鸿照. 纳米羟基磷灰石/聚酰胺/壳聚糖复合骨修复材料研究[D]. 四川:四川大学,2007:20.
[11] Xie J,Shao H,He D,et al. Ultrahigh Strength of Three-dimensional Printed Diluted Magnesium Doping Wollastonite Porous Scaffolds[J]. Mrs Communications, 2015,5(4):1-9.
[12] 赵易尔,金丹. 壳聚糖复合材料在骨组织工程中的应用[J]. 基因组学与应用生物学,2015,34(4):842-848.
[13] Riccardoaa M. Chitins and Chitosans for the Repair of Wounded Skin,Nerve,Cartilage and Bone[J]. Carbohydrate Polymers,2009,76(2):167-182.
[14] Jin H H,Kim D H,Kim T W,et al. In Vivo Evaluation of Porous Hydroxyapatite/chitosan-alginate Composite Scaffolds for Bone Tissue Engineering[J]. International Journal of Biological Macromolecules,2012,51(5):1079-1085.
[15] 薛震,牛丽媛,安刚,等. 纳米羟基磷灰石/壳聚糖/半水硫酸钙为可注射骨组织工程支架材料的可行性[J]. 中国组织工程研究,2015,19(8):1160-1164.
[16] 王菲,周洪,郭昱成,等. 纳米羟基磷灰石/壳聚糖/聚丙交酯支架的体外生物相容性和成骨活性[J]. 中国组织工程研究,2014,18(8):1198-1204.
[17] 卢志华,王韶进,马育栋,等. 羟基磷灰石/羧甲基壳聚糖组织工程骨的制备及表征[J]. 材料导报,2013, 27(16):5-9.
[18] 李波. 壳聚糖/胶原骨组织工程支架材料的仿生矿化及生物相容性研究[D]. 广州:暨南大学,2013:11-13.
[19] 韩长菊,陈庆华,杨喜昆,等. 纳米羟基磷灰石/胶原蛋白复合支架材料的制备与性能研究[J]. 材料导报, 2007,21(9):139-141.
[20] Pek Y S,Gao S,Arshad M S M,et al. Porous Collagenapatite Nanocomposite Foams as Bone Regeneration Scaffolds[J]. Biomaterials,2008,29(32):4300-4305.
[21] 杨春蓉,王迎军,陈晓峰. 纳米羟基磷灰石/胶原/磷酸丝氨酸仿生复合骨组织工程支架材料的制备及表征[J]. 科学通报,2013,58(3):267-271.
[22] Xia Z,Yu X,Jiang X,et al. Fabrication and Characterization of Biomimetic Collagen-apatite Scaffolds with Tunable Structures for Bone Tissue Engineering[J]. Acta Biomaterialia,2013,9(7):7308-7319.
[23] 廖建国,李艳群,段星泽,等. 纳米羟基磷灰石/聚合物复合骨修复材料[J]. 化学进展,2015,27(2):220-228.
[24] 刘琳,孔祥东,蔡玉荣,等. 纳米羟基磷灰石/丝素蛋白复合支架材料的降解特性及生物相容性研究[J]. 化学学报,2008,66(16):1919-1923.
[25] 王江,左奕,杨维虎,等. 纳米羟基磷灰石丝素蛋白仿生矿化材料的制备研究[J]. 无机材料学报,2009,24(2):264-268.
[26] 孙庆治. 纳米羟基磷灰石/丝素蛋白人工骨修复骨缺损[J]. 中国组织工程研究,2015,19(8):1190-1194.
[27] Zadegan S,Vahidi B,Kouhanestani J N,et al. Biocompatibility and Bioactivity Behavior of Coelectrospun Silk Fibroin-hydroxyapatite(SF-Hap)Nanofibers Using Formic Acid[J]. Micro & Nano Letters,2018,13(5):709-713.
[28] 刘琼,廖建国,闪念. 纳米羟基磷灰石/聚合物骨修复材料的研究进展[J]. 硅酸盐通报,2014,33(3):558-563.
[29] 胡堃,张余,任卫卫. 羟基磷灰石/聚乳酸人工骨修复材料的研究进展[J]. 中国骨科临床与基础研究杂志, 2013,(53):56-62.
[30] 沈烈,乔飞,张宇强,等. 炭纤维增强羟基磷灰石/聚乳酸复合生物材料的力学性能和体外降解性能[J]. 复合材料学报,2007,24(5):61-65.
[31] Tverdokhlebov S I,Bolbasov E N,Shesterikov E V,et al. Modification of Polylactic Acid Surface Using RF Plasma Discharge with Sputter Deposition of a Hydroxyapatite Target for Increased Biocompatibility[J]. Applied Surface Science,2015,329:32-39.
[32] Zhang H,Mao X,Zhao D,et al. Three Dimensional Printed Polylactic Acid-hydroxyapatite Composite Scaffolds for Prefabricating Vascularized Tissue Engineered Bone:An in Vivo Bioreactor Model[J]. Scientific Reports, 2017,7(1):1-13.
[33] 杨春瑜,杨春莉,田晓红,等. 改性羟基磷灰石/聚乳酸复合材料制备及其生物相容性评价[J]. 西安交通大学学报,2010,44(12):114-118.
[34] 戴延凤,张好宾, 魏俊超,等. 改性羟基磷灰石/聚乳酸(PLLA)复合材料的制备及细胞毒性[J]. 南昌大学学报:理科版,2012,36(4):359-362.
[35] 冯娇,刘海蓉,李永生,等. 纳米羟基磷灰石/聚酰胺6医用复合材料的制备及性能表征[J]. 复合材料学报, 2015,32(6):1602-1610.
[36] 徐显春,王治,侯铁奇. 纳米羟基磷灰石/聚酰胺材料的体内成骨能力[J]. 中国组织工程研究,2015,19(30):4769-4773.
[37] 强巴单增,刘晓兰. 多孔纳米羟基磷灰石/聚酰胺复合骨修复材料的制备[J]. 中国组织工程研究,2016,20(3):392-396.
[38] Li K,Tjong S C.Mechanical, Thermal and Bioactive Behaviors of Polyamide 6/hydroxyapatite Nanocomposites[J]. Journal of Nanoscience and Nanotechnology,2011,11(12):10644-10648.
[39] Jiang J L,Fang T L,Zhou J,et al. Vancomycin-loaded Nano-hydroxyapatite Pellets to Treat MRSA-induced Chronic Osteomyelitis with Bone Defect in Rabbits[J]. Inflammation Research,2012,61(3):207-215.
[40] Bhattacharya R,Kundu B,Nandi S K,et al. Systematic Approach to Treat Chronic Osteomyelitis through Localized Drug Delivery System:Bench to Bed Side[J]. Materials Science & Engineering C-Materials for Biological Applications,2013,33(7):3986-3993.
[41] Geuze R E,Theyse L F,Kempen D H,et al. A Differential Effect of Bone Morphogenetic Protein-2 and Vascular Endothelial Growth Factor Release Timing on Osteogenesis at Ectopic and Orthotopic Sites in a Largeanimal Model[J]. Tissue Engineering Part A,2012,18(20):2052-2062.
[42] Hernández A,Reyes R,Sánchez E,et al. In Vivo Osteogenic Response to Different Ratios of BMP-2 and VEGF Released from a Biodegradable Porous System[J]. Journal of Biomedical Materials Research Part A,2012, 100A(9):2382-2391.
[43] 刘广涛,高峰,徐军,等. 可注射性纳米羟基磷灰石/壳聚糖复合支架与骨髓间充质干细胞、骨形态发生蛋白2修复骨缺损的体外实验[J]. 中国组织工程研究, 2018,22(2):228-233.
[44] 曾建华,熊龙,李经堂,等. 纳米羟基磷灰石复合重组人骨形态发生蛋白-2人工骨治疗骨缺损的研究[J]. 南昌大学学报:医学版,2014(8):8-13.
[45] Ozturk B Y,Inci I,Egri S,et al. The Treatment of Segmental Bone Defects in Rabbit Tibiae with Vascular Endothelial Growth Factor(VEGF)-loaded Gelatin/hy droxyapatite "Cryogel" Scaffold[J]. European Journal of Orthopaedic Surgery & Traumatology,2013,23(7):767-774.
[46] Poh C K,Ng S,Lim T Y,et al. In Vitro Characterizations of Mesoporous Hydroxyapatite as a Controlled Release Delivery Device for VEGF in Orthopedic Applications[J]. Journal of Biomedical Materials Research Part A,2012, 100A(11):3143-3150.
Options
文章导航

/