监管技术

基于网络药理学和分子对接技术探讨苇茎汤治疗重症肺炎作用机制

  • 贾茗棪 ,
  • 谢凯 ,
  • 王海峰
展开
  • 1.河南中医药大学第一附属医院,郑州 450000;
    2.河南中医药大学第一临床医学院,郑州 450000;
    3.呼吸疾病中医药防治省部共建协同创新中心,郑州 450046
贾茗棪 E-mail:jmyhhxx88@163.com
王海峰 Tel:(0371)66221840;E-mail:wangh_f@126.com

收稿日期: 2024-06-27

  网络出版日期: 2025-02-05

基金资助

国家自然科学基金项目(编号 81774222,82074411); 河南省中医药科学研究重大专项(编号 20-21ZYZD04); 河南省高校科技创新团队支持计划(编号 22IRTSTHN029)

Investigating the Mechanism of Action of Weijing Decoction in the Treatment of Severe Pneumonia based on Network Pharmacology and Molecular Docking Technology

  • Jia Mingyan ,
  • Xie Kai ,
  • Wang Haifeng
Expand
  • 1. The First Affiliated Hospital of Henan University of CM, Zhengzhou 450000, China;
    2. The First Clinical Medical College of Henan University of CM, Zhengzhou 450000, China;
    3. Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of China, Zhengzhou 450046, China;

Received date: 2024-06-27

  Online published: 2025-02-05

摘要

目的: 通过网络药理学探究苇茎汤治疗重症肺炎的潜在作用机制。方法: 使用中药系统药理学数据库与分析平台(TCMSP)、Uniprot数据库筛选苇茎汤药物活性成分及作用靶点,运用Cytoscape构建“中药-活性成分-靶点”网络图。在人类基因组数据库(GeneCards)数据库中搜索重症肺炎的疾病靶点,与苇茎汤药物活性靶点取交集得药物治疗的潜在靶标。借助String数据库及Cytoscape软件构建蛋白间相互作用网络,筛选出核心靶点。运用R软件进行交集靶点的基因主体(GO)及京都基因与基因组百科全书(KEGG)富集分析。将筛选出的关键靶基因和活性成分利用 AutoDock 软件进行分子对接,选择最佳结合靶标进行分子对接。结果: 苇茎汤共有23个活性成分,40个药物活性靶点,重症肺炎靶点有2558个。将药物-疾病靶点取交集,共有20个交集靶点,其中PTGS2、BCL2、BAX、CASP9、CASP3、CASP8等为核心交集靶点。GO和KEGG富集分析结果显示苇茎汤治疗重症肺炎主要与炎症、免疫、代谢有关。分子对接结果表明,苇茎汤的关键成分与目的基因CASP3、PTGS2具有良好的结合性。结论: 苇茎汤可能通过缓解炎症免疫反应、减轻细胞凋亡及氧化应激反应等治疗重症肺炎。

本文引用格式

贾茗棪 , 谢凯 , 王海峰 . 基于网络药理学和分子对接技术探讨苇茎汤治疗重症肺炎作用机制[J]. 中国药事, 2024 , 38(11) : 1301 -1312 . DOI: 10.16153/j.1002-7777.20240511

Abstract

Objective: To investigate the potential mechanism of action of Weijing Decoction in the treatment of severe pneumonia by network pharmacology. Methods: TCMSP and Uniprot databases were used to screen the active ingredients and targets of Weijing Decoction, and Cytoscape was used to construct a "Traditional Chinese Medicine-Active Ingredients-Target" network diagram. The disease targets of severe pneumonia were searched in the GeneCards database, and potential targets for drug treatment were obtained by intersecting with the active targets of Weijing Decoction. The protein-protein interaction networks were builded by using String database and Cytoscape software, then core targets were screened out. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) of intersection targets were performed by useing R software. AutoDock software was used to perform molecular docking on the selected key target genes and active ingredients, and the best binding target for molecular docking was selected. Results: There were a total of 23 active ingredients, 40 drug active targets, and 2558 targets for severe pneumonia in Weijing Decoction. Intersecting drug disease targets, there were a total of 20 intersecting targets, among which PTGS2, BCL2, BAX, CASP9, CASP3, CASP8, etc. were the core intersecting targets. The GO and KEGG enrichment analysis results showed that the treatment of severe pneumonia with Weijing Decoction was mainly related to inflammation, immunity, and metabolism. The molecular docking results indicated that the key components of Weijing Decoction had good binding affinity with the target genes CASP3 and PTGS2. Conclusion: Weijing Decoction may treat severe pneumonia by alleviating inflammatory immune response, reducing cell apoptosis and oxidative stress response

参考文献

[1] Luo W, Liu Y, Zhang Q, et al.Effect of Traditional Chinese Medicine Injections on Severe Pneumonia[J]. Medicine, 2020,99(39):e22012.
[2] Mizgerd JP.Pathogenesis of Severe Pneumonia[J]. Current Opinion in Pulmonary Medicine,2017,23(3):193-197.
[3] Lienau J, Müller-Redetzky H, Suttorp N, et al.New Pathogenetic Concepts and Pharmacological Studies on Adjuvant Therapy in Severe Pneumonia[J]. Pneumologie (Stuttgart, Germany),2016,70(6):372-378.
[4] 邱少聪,未先洁,徐江荣. 重症肺炎患者病原学特点及血清ChE、RAGE水平与病情进展的关系[J]. 中国病原生物学杂志,2021,16(12):1465-1469.
[5] Søndergaard MJ, Friis MB, Hansen DS, et al.Clinical Manifestations in Infants and Children with Mycoplasma Pneumoniae Infection[J]. PLOS ONE,2018,13(4): e195288.
[6] 王海峰,李建生,王至婉,等. 中西医结合治疗重症肺炎临床随机对照试验的系统评价[J]. 中华中医药杂志,2010,25(5):738-742.
[7] Liu S, Shergis J, Chen X, et al.Chinese Herbal Medicine (Weijing Decoction) Combined with Pharmacotherapy for the Treatment of Acute Exacerbations of Chronic Obstructive Pulmonary Disease[J]. Evidence-Based Complementary and Alternative Medicine,2014,2014: 1-12.
[8] 刘怀全,秦忠,朱星,等. 基于肠道菌群理论探讨千金苇茎汤治疗呼吸系统疾病的潜在靶点[J]. 中华中医药学刊,2020,38(2):41-43.
[9] Xiong F, Jiang M, Chen M, et al.Study on Inhibitory Effect of MaiMenDong Decoction and WeiJing Decoction Combination with Cisplatin on NCI-A549 Xenograft in Nude Mice and Its Mechanism[J]. Journal of Cancer, 2017,8(13):2449-2455.
[10] 唐虎,李睿,赵远,等. 中医涤痰开窍法治疗重症肺炎的理论探讨[J]. 四川中医,2021,39(6):19-21.
[11] 李金桐,刘雪寒,张亚楠,等. 基于数据挖掘探讨内服中药治疗成人重症肺炎组方规律[J]. 山东中医药大学学报,2021,45(4):481-486.
[12] 詹晓芳. 合用千金苇茎汤治疗重症肺炎临床观察[J]. 光明中医,2020,35(7):980-982.
[13] 伍德军,朱春红,刘家朋. 千金苇茎汤辅助治疗重症肺炎的临床疗效[J]. 内蒙古中医药,2021,40(3): 35-36.
[14] 温国栋. 千金苇茎汤加减疗法治疗重症肺炎的临床效果[J]. 内蒙古中医药,2021,40(6):52-53.
[15] 田代华. 黄帝内经素问[M]. 北京:人民卫生出版社, 2010.
[16] 李建生. 衰老积损及热毒损肺为老年人肺炎的主要病机[J]. 中华中医药杂志,2011,26(6):1278-1281.
[17] 李娥,陈荣,吕佳杰. 宣白承气汤治疗痰热壅肺型重症肺炎效果及对PCT、IL-13的影响研究[J]. 中华中医药学刊,2021,39(8):242-244.
[18] 陈纪藩. 金匮要略[M]. 北京:人民卫生出版社,2011.
[19] 顾婷婷. 应用千金苇茎汤治疗1例社区获得性肺炎的临床效果观察[J]. 上海医药,2020,41(11):40-41, 49.
[20] 付强恒,杨洪静,谢娟,等. 千金苇茎汤加减治疗重症肺炎患者的临床疗效及其部分机制[J]. 世界中医药,2019,14(7):1738-1742.
[21] Sharma A, Cooper R, Bhardwaj G, et al.The Genus Nepeta: Traditional Uses, Phytochemicals and Pharmacological Properties[J]. Journal of Ethnopharmacology,2021, 268:113679.
[22] Ping F, Wang Y, Shen X, et al.Virtual Screening and Molecular Docking to Study the Mechanism of Chinese Medicines in the Treatment of Coronavirus Infection[J]. Medical Science Monitor,2022,28:e934102.
[23] Zhao H, Zhang X, Wang M, et al.Stigmasterol Simultaneously Induces Apoptosis and Protective Autophagy by Inhibiting Akt/mTOR Pathway in Gastric Cancer Cells[J]. Frontiers in Oncology,2021,11: 629008.
[24] Ahmad Khan M, Sarwar AHMG, Rahat R, et al.Stigmasterol Protects Rats from Collagen Induced Arthritis by Inhibiting Proinflammatory Cytokines[J]. International Immunopharmacology,2020,85:106642.
[25] Peng J, Chen X, Hou M, et al.The TCM Preparation Feilike Mixture for the Treatment of Pneumonia: Network Analysis, Pharmacological Assessment and Silico Simulation[J]. Frontiers in Pharmacology,2022,13:794405.
[26] Yu H, Song L, Cao X, et al.Hederagenin Attenuates Cerebral Ischaemia/Reperfusion Injury by Regulating MLK3 Signalling[J]. Frontiers in Pharmacology,2020, 11:1173.
[27] Lee CW, Park SM, Zhao R, et al.Hederagenin, a Major Component of Clematis Mandshurica Ruprecht Root, Attenuates Inflammatory Responses in RAW 264.7 Cells and in Mice[J]. International Immunopharmacology, 2015,29(2):528-537.
[28] Wang L, Zhao M.Suppression of NOD-like Receptor Protein 3 Inflammasome Activation and Macrophage M1 Polarization by Hederagenin Contributes to Attenuation of Sepsis-Induced Acute Lung Injury in Rats[J]. Bioengineered,2022,13(3):7262-7276.
[29] Wang K, Liu X, Liu Q, et al.Hederagenin Potentiated Cisplatin and Paclitaxel-Mediated Cytotoxicity by Impairing Autophagy in Lung Cancer Cells[J]. Cell Death & Disease,2020,11(8):611.
[30] Ma W, Huang Q, Xiong G, et al.The Protective Effect of Hederagenin on Pulmonary Fibrosis by Regulating the Ras/ JNK/NFAT4 Axis in Rats[J]. Bioscience, Biotechnology, and Biochemistry,2020,84(6):131-1138.
[31] Khalilzadeh B, Shadjou N, Kanberoglu GS, et al.Advances in Nanomaterial Based Optical Biosensing and Bioimaging of Apoptosis via Caspase-3 Activity: a Review[J]. Microchimica Acta,2018,185(9):434.
[32] Lorente L, Martín MM, González-Rivero AF, et al.Blood Concentrations of Proapoptotic Sfas and Antiapoptotic Bcl2 and COVID-19 Patient Mortality[J]. Expert Review of Molecular Diagnostics,2021,21(8):837-844.
[33] Joshi C, Jadeja V, Zhou H.Molecular Mechanisms of Palmitic Acid Augmentation in COVID-19 Pathologies[J]. International Journal of Molecular Sciences, 2021,22(13):7127.
[34] Wang Y, Li H, Shi Y, et al. Mir-143-3p Impacts on Pulmonary Inflammatory Factors and Cell Apoptosis in Mice with Mycoplasmal Pneumonia by Regulating TLR4/ MyD88/NF-κB Pathway[J]. Bioscience Reports,2020, 40(7):BSR20193419.
[35] Simpson DS, Pang J, Weir A, et al.Interferon-γ Primes Macrophages for Pathogen Ligand-Induced Killing via a Caspase-8 and Mitochondrial Cell Death Pathway[J]. Immunity,2022,55(3):423-441.
[36] Shin N, Kim C, Seo C, et al.Galgeun-Tang Attenuates Cigarette Smoke and Lipopolysaccharide Induced Pulmonary Inflammation via IκBα/NF-κB Signaling[J]. Molecules,2018,23(10):2489.
[37] Olave N, Lal CV, Halloran B, et al.Iloprost Attenuates Hyperoxia-Mediated Impairment of Lung Development in Newborn Mice[J]. American Journal of Physiology. Lung Cellular and Molecular Physiology,2018,315(4): L535-L544.
[38] van Geffen C, Deißler A, Beer-Hammer S, et al. Myeloid-Derived Suppressor Cells Dampen Airway Inflammation through Prostaglandin E2 Receptor 4[J]. Frontiers in Immunology,2021,12:695933.
[39] Sun JH, Sun F, Yan B, et al.Data Mining and Systematic Pharmacology to Reveal the Mechanisms of Traditional Chinese Medicine in Mycoplasma Pneumoniae Pneumonia Treatment[J]. Biomedicine & Pharmacotherapy,2020, 125:109900.
[40] Qiu Y, Chen C, Zhang J, et al.VEGF Attenuates Lung Injury by Inducing Homing of CD133+ Progenitors via VEGFR1[J]. Biochemical and Biophysical Research Communications,2019,511(3):650-657.
[41] Strouvalis I, Routsi C, Adamopoulou M, et al.Early Increase of VEGF-A is Associated with Resolution of Ventilator-Associated Pneumonia: Clinical and Experimental Evidence[J]. Respirology,2018,23(10):942-949.
文章导航

/