质量管理:传染病体外诊断试剂质量控制研究专栏

基于探针捕获法的病原靶向高通量测序检测流程的建立和验证研究

  • 李丽莉 ,
  • 任珊珊 ,
  • 王嘉平 ,
  • 易玉婷 ,
  • 田超 ,
  • 刘东来 ,
  • 许四宏
展开
  • 1.中国食品药品检定研究院 国家药品监督管理局医疗器械质量研究与评价重点实验室 国家药品监督管理局体外诊断试剂质量研究与评价重点实验室,北京 100050;
    2.北京吉因加基因研究院,北京 102206
李丽莉 Tel:(010)67095599;E-mail:lilili@nifdc.org.cn;共同第一作者:任珊珊 Tel:18201680947;E-mail:renshanshan@nifdc.org.cn
刘东来 E-mail:liudonglai@nifdc.org.cn;许四宏 E-mail:xushong@nifdc.org.cn

收稿日期: 2024-11-12

  网络出版日期: 2025-05-27

基金资助

中国食品药品检定研究院关键技术研究基金(编号 GJJS-2022-2-2)

Establishment and Validation of Pathogen Targeted Next-generation Sequencing Process Based on Probe Capture Method

  • Li Lili ,
  • Ren Shanshan ,
  • Wang Jiaping ,
  • Yi Yuting ,
  • Tian Chao ,
  • Liu Donglai ,
  • Xu Sihong
Expand
  • 1. National Institutes for Food and Drug Control, NMPA Key Laboratory for Quality Research and Evaluation of Medical Devices, NMPA Key Laboratory for Quality Research and Evaluation of In Vitro Diagnostics, Beijing 100050, China;
    2. Beijing GenePlus Genomics Institute, Beijing 102206, China

Received date: 2024-11-12

  Online published: 2025-05-27

摘要

目的: 研究基于探针捕获法的病原靶向高通量测序(tNGS)检测流程的建立和优化,以及自动化的实现,并对分析性能进行验证研究。方法: 分析tNGS的影响因素,包括探针设计、生产质控、数据量和测序读长等,通过采用多种细菌、真菌、病毒和非典型病原体等62种微生物构建的参考盘进行分析性能评价,同时比较手工操作与自动化流程在检出限、精密度和交叉污染等性能指标的差异。结果: 62种微生物不同病原浓度的准确性、检出限、精密度、特异性及线性的结果显示随着探针覆盖度的提高,目标病原的检出限性能随之提高,且仍保持较高的特异性;经优化后的tNGS检测流程在准确性、检出限、精密度、特异性、线性等方面均表现出良好的分析性能;自动化流程在检出限性能保持一致的前提下,精密度和抗交叉污染性能均优于手工操作流程。结论: 研究建立的探针捕获法tNGS检测流程具有良好的分析性能,为临床病原检测提供了新策略。未来进一步研究应着重于临床样本确认、自动化流程的全面验证,以推动该技术在临床实际工作中更好的应用。

本文引用格式

李丽莉 , 任珊珊 , 王嘉平 , 易玉婷 , 田超 , 刘东来 , 许四宏 . 基于探针捕获法的病原靶向高通量测序检测流程的建立和验证研究[J]. 中国药事, 2025 , 39(4) : 415 -429 . DOI: 10.16153/j.1002-7777.2024-11-0028

Abstract

Objective: To study the establishment and optimization of the pathogen targeted next-generation sequencing (tNGS) process based on the probe capture method, as well as the automated implementation of it, and to verify the analytical performance. Methods: The factors influencing the tNGS methodology were analyzed, including the probe design and production quality control, data volume and sequencing read length. The analytical performance was evaluated by using a reference panel constructed with 62 types of microbes, including various bacteria, fungi, viruses, and atypical pathogens. As well as, the differences in limit of detection, precision and cross-contamination between manual operations and automated were compared. Results: The study showed that as the probe coverage increased, the limit of detection performance increases accordingly, and the probe still maintained high specificity. The optimized tNGS demonstrated good analyze performance in terms of accuracy, limit of detection, precision, specificity linearity and so on. Under the premise of the same limit of detection performance, the automated method was superior to manual operation in precision and cross-contamination resistance performance. Conclusion: The tNGS process established in this study has good analytical performance and provides a new strategy for clinical pathogen detection. Future studies should focus on clinical sample confirmation and automated process validation to promote better application of the technology in practical clinical work.

参考文献

[1] Han D, Li Z, Li R, et al.mNGS in Clinical Microbiology Laboratories: on the Road to Maturity[J]. Crit Rev Microbiol, 2019, 45(5-6): 668-685.
[2] 刘东来,张春涛,王佑春,等.病原宏基因组高通量测序技术质量控制与评价的挑战和思考[J].生物工程学报,2020,36(12):12.
[3] Mitchell SL, Simner PJ.Next-Generation Sequencing in Clinical Microbiology: Are We There Yet?[J]. Clin Lab Med, 2019, 39(3): 405-418.
[4] Gaston DC, Miller HB, Fissel JA, et al.Evaluation of Metagenomic and Targeted Next-Generation Sequencing Workflows for Detection of Respiratory Pathogens from Bronchoalveolar Lavage Fluid Specimens[J]. J Clin Microbiol, 2022, 60(7): e0052622.
[5] Li X, Liu Y, Li M, et al.Epidemiological Investigation of Lower Respiratory Tract Infections during Influenza A (H1N1) pdm09 Virus Pandemic based on Targeted Next-generation Sequencing[J]. Front Cell Infect Microbiol, 2023, 13: 1303456.
[6] Khodakov D, Wang C, Zhang DY.Diagnostics based on Nucleic Acid Sequence Variant Profiling: PCR, Hybridization, and NGS Approaches[J]. Adv Drug Deliv Rev, 2016, 105(Pt A): 3-19.
[7] Cai S, Yuan J, Li Y, et al.Etiological Diagnostic Performance of Probe Capture-based Targeted Next-generation Sequencing in Bloodstream Infection[J]. J Thorac Dis, 2024, 16(4): 2539-2549.
[8] Dickson ZW, Hackenberger D, Kuch M, et al.Probe Design for Simultaneous, Targeted Capture of Diverse Metagenomic Targets[J]. Cell Rep Methods, 2021, 1(6): 100069.
[9] 刘东来,沈舒,田颖新,等.病原宏基因组高通量测序技术质量评价参考品的建立[J].分子诊断与治疗杂志,2022,14(5):4.
[10] 刘东来,张栋,韩东升,等.病原宏基因组高通量测序医疗机构本地化质量评价联合研究[J].中国食品药品监管,2022(12):4-15.
[11] Liu D, Zhou H, Xu T, et al.Multicenter Assessment of Shotgun Metagenomics for Pathogen Detection[J]. EBioMedicine, 2021, 74: 103649.
[12] Zhou H, Liu D, Ma L, et al.A SARS-CoV-2 Reference Standard Quantified by Multiple Digital PCR Platforms for Quality Assessment of Molecular Tests[J]. Anal Chem, 2021, 93(2): 715-721.
[13] 中华医学会检验医学分会.高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识[J].中华检验医学杂志,2020,43(12):15.
[14] Schlaberg R, Chiu CY, Miller S, et al.Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection[J]. Arch Pathol Lab Med, 2017, 141(6): 776-786.
[15] Han D, Diao Z, Lai H, et al.Multilaboratory Assessment of Metagenomic Next-generation Sequencing for Unbiased Microbe Detection[J]. J Adv Res, 2021, 38:213-222.
[16] 张栋,杨启文.病原宏基因组检测平台的建设以及质量保证[J].中华医学杂志,2023,103(15):1092-1097.
[17] Gaston DC, Miller HB, Fissel JA, et al.Evaluation of Metagenomic and Targeted Next-Generation Sequencing Workflows for Detection of Respiratory Pathogens from Bronchoalveolar Lavage Fluid Specimens[J]. J Clin Microbiol, 2022, 60(7): e0052622.
[18] Chen H, Zheng Y, Zhang X, et al.Clinical Evaluation of Cell-free and Cellular Metagenomic Next-generation Sequencing of Infected Body Fluids[J]. J Adv Res, 2024, 55:119-129.
[19] 中国生物医学工程学会医学检验工程分会. 临床下一代测序的自动化与常规化专家共识[J].中国生物医学工程学报,2023,42(6):641-650.
文章导航

/